Land Cover Mapping of a Tropical Region by Integrating Multi-Year Data into an Annual Time Series
نویسندگان
چکیده
Generating annual land cover maps in the tropics based on optical data is challenging because of the large amount of invalid observations resulting from the presence of clouds and haze or high moisture content in the atmosphere. This study proposes a strategy to build an annual time series from multi-year data to fill data gaps. The approach was tested using the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index and spectral bands as input for land cover classification of Colombia. In a second step, selected ancillary variables, such as elevation, L-band Radar, and precipitation were added to improve overall accuracy. Decision-tree classification was used for assigning eleven land cover classes using the International Geosphere-Biosphere Programme (IGBP) legend. Maps were assessed by their spatial confidence derived from the decision tree approach and conventional accuracy measures using reference data and statistics based on the error matrix. The multi-year data integration approach drastically decreased the area covered by invalid pixels. Overall accuracy of land cover maps significantly increased from 58.36% using only optical time series of 2011 filtered for low quality observations, to 68.79% when using data for 2011 2 years. Adding elevation to the feature set resulted in 70.50% accuracy.
منابع مشابه
Evaluation of Sentinel-1 Interferometric SAR Coherence efficiency for Land Cover Mapping
In this study, the capabilities of Interferometric Synthetic Aperture Radar (InSAR) time series data and machine learning have been evaluated for land cover mapping in Iran. In this way, a time series of Sentinel-1 SAR data (including 16 SLC images with approximately 24 days time interval) from 2018 to 2020 were used for a region of Ahvaz County located in Khuzestan province. Using InSAR proces...
متن کاملPhenology-Based Method for Mapping Tropical Evergreen Forests by Integrating of MODIS and Landsat Imagery
Updated extent, area, and spatial distribution of tropical evergreen forests from inventory data provides valuable knowledge for research of the carbon cycle, biodiversity, and ecosystem services in tropical regions. However, acquiring these data in mountainous regions requires labor-intensive, often cost-prohibitive field protocols. Here, we report about validated methods to rapidly identify t...
متن کاملMulti-Temporal Assessment of Mangrove Forests Change in the Coastal Areas of Bushehr Region Based on Landsat Satellite Imagery
Continual access to precise information about the land use/land cover (LULC) changes of the Earth’s surface is extremely important for any sustainable development program in which LULC serves as one of the major input criteria. In this study, a supervised classification was applied to three Landsat images collected in 1986, 1998and 2018, providing mangrove forests change data in the coastal are...
متن کاملUse of Intra-annual Satellite Imagery Time-series for Land Cover Characterisation Purpose
Automatic image classification often fails at separating a large number of land cover classes that punctually may present similar spectral reflectances. To improve the classification accuracy in such situations, multi-temporal satellite data has proven to be valuable auxiliary information. In this paper, we present a study exploring the usefulness of intra-annual satellite images timeseries for...
متن کاملEstimation of Inter-annual Crop Area Variation by the Application of Spectral Angle Mapping to Low Resolution Multitemporal NDVI Images
This current work is aimed at developing and testing a methodology which can be applied to low spatial resolution satellite data to assess inter-annual crop area variations on a regional scale. The methodology is based on the assumption that within mixed pixels, such variations are reflected by changes of the related multitemporal Normalised Difference Vegetation Index (NDVI) profiles. This imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015